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« CMOQOS has hit the power wall

— Non-scaling of kT/g and hence Vg, V4,
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* But, can’t forget that reducing cost is still the
underlying imperative



My Assumptions (Implied by Cost)

Stick to binary digital logic
— Replacing full design/software stack generally too
expensive

— Devices need to have gain (noise margins)

New device has yield and reliability comparable to
CMOS

— Today: chip with ~5 billion devices works for ~5 years

New device has lower circuit/system-level energy
over some range of performance and area...
— Can translate all of these back to $



Typical Processor
Power Breakdown

= Control +
Datapath

= Memory

Clock

clk clk

 Chip energy/perf. tracks datapath/control
* Clock frequency set by delay through CL



Logic Energy and Delay

Activity factor: a Cap./inv.: C

\ Viq Vg

Fanout: f

Logic depth: L,



Logic Energy and Delay
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Implications on Required I ./l
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Performance Supply voltage : Vy,,,, [V]

* Pick V4, Vi, to minimize energy for given
performance (1/delay)
— Assuming work function (V) can be freely tuned

* Result: optimal I, /I 4 < Ly-f/ a



Optimal I ./l ¢ Insensitive to Device

Device A

Device B

. Seff

Alog E

Device A

\ —

Alog tdelay

Eleak | Son.nom
= -1 .
Enom Soff,nom Device B

lambertwW

>

tdelay,2 Delay tdelay

Soff +Son
Seff

H. Kam, T.-J. King Liu, and E. Alon, “Design Requirements for Steeply Switching
Logic Devices,” to appear in IEEE Trans. on Electron Devices




Example Numbers

Logic depth: L, ~ 20 to 40
— Can’t be too small b/c of flip-flop and clocking
overhead

Activity factor: a ~ 1% to .01%
— Most outputs unlikely to change in complex logic

Fanout: f~2to 6

So optimal 1 ./l ¢ ~ 10% — 10°
— This is really the logic switch requirement
— l.e., power management doesn’t change this...



Why Power Gating Doesn’t Help

e Can indeed use another T
switch to turn off power pg_b

— With higher | ./l + power In Out
switch, reduces E,,,

effective a
— When to turn the power on?

« “Power managing” each gate In J%Ckom
= reproducing the logic...
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« But very hard to improve l
T



What Power Gating Is Good For

* Eliminate E,_,,
when system Is off

— l.e., when “obviously” not
doing any work

— So that knowing gating
sighal is nearly free

Energy

« Key point:
— Power gating only reduces
“system variability” penalty

— Device variability?

Performance
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Implications of Device Variability
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* Device variability hurts in two ways
— Reduces effective |, (delay set by worst-case)
— Increase effective | (leaky devices dominate)

* Forces increase in nominal I ./l ... .



Steep Switches Need Low Variation

 With steep device,
leakage increases
dramatically with
S(AVy,)

- 60mVidec
= 4bmVidec
- 30mVidec
—15mVidec

 For same variability:

— Can even make
“steep” switch
worse than CMOS
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 Must consider and quantify device variability In
advance
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Another Issue: Wire Capacitance
Vdd

Input Output

cTel ey
* Wires critical to both delay and energy:

— Minimum device C: ~0.1 fF
— 1um wire C: ~0.2 fF

* Wires often set required device V/l,, (R,,)
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Where New Devices Look Good
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 But, even if new switch only improves energy at
higher delay (higher R_,)...
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Parallelism
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« Parallelism allows slower devices
— Already applying parallelism to CMOS today

|

Performance
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Parallelism (cont’d)

* Benefits of parallelism
will eventually run out

— CMOS has minimum
energy/op

— Set by min. V4 to
achieve optimal I,/
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Future: Parallelism doesn’t
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* Likely the main opportunity for new devices...
— If achieve | ./l ¢ of ~10% — 10° at (>10X) lower C,.,V44°
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Summary

« Simple circuit/system models set device
requirements

— 1, /1,5 set by logic depth, activity factor
— Must consider variability and wires

« Parallelism limited by device E_
— Opportunity for new, low voltage devices

* Final plug: device/circuit co-design critical

— Especially if alternate logic device is very different
from CMOS
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