Circuit- and System-Driven Requirements for Digital Logic Devices

Elad Alon with Hei Kam, Yue Lu, Tsu-Jae King Liu

University of California, Berkeley

A Reminder

- CMOS has hit the power wall

 Non-scaling of kT/q and hence V_{dd}, V_{th}
- But, can't forget that reducing cost is still the underlying imperative

My Assumptions (Implied by Cost)

- Stick to binary digital logic
 - Replacing full design/software stack generally too expensive
 - Devices need to have gain (noise margins)
- New device has yield and reliability comparable to CMOS
 - Today: chip with ~5 billion devices works for ~5 years
- New device has lower circuit/system-level energy over some range of performance and area...
 - Can translate all of these back to \$

What Digital Chips Look Like

- Chip energy/perf. tracks datapath/control
- Clock frequency set by delay through CL

Logic Energy and Delay

Logic Energy and Delay Vdd Q clk clk

• $t_{delay} = L_d f C V_{dd} / (2I_{on})$

• $E_{dyn} + E_{leak} = \alpha L_d f C V_{dd}^2 + L_d f I_{off} V_{dd} t_{delay}$

• $E_{dyn} + E_{leak} = \alpha L_d f C V_{dd}^2 (1 + (L_d f / 2\alpha) / (I_{on} / I_{off}))$

Implications on Required I_{on}/I_{off}

 Pick V_{dd}, V_{th} to minimize energy for given performance (1/delay)

Assuming work function (V_{th}) can be freely tuned

• Result: optimal $I_{on}/I_{off} \propto L_d f/\alpha$

Optimal I_{on}/I_{off} Insensitive to Device

$$\frac{I_{on}}{I_{off}} = \beta \frac{L_d f}{4\alpha}, \quad \beta = -\frac{S_{eff}}{S_{off}} lambert W \left(-\frac{4\alpha}{L_d f} \frac{S_{off}}{S_{eff}} e^{\left(\frac{Soff + Son}{Seff}\right)} \right)$$

H. Kam, T.-J. King Liu, and E. Alon, "Design Requirements for Steeply Switching Logic Devices," to appear in *IEEE Trans. on Electron Devices*

Example Numbers

- Logic depth: L_d ~ 20 to 40
 - Can't be too small b/c of flip-flop and clocking overhead
- Activity factor: α ~ 1% to .01%
 Most outputs unlikely to change in complex logic
- Fanout: *f* ~ 2 to 6
- So optimal $I_{on}/I_{off} \sim 10^4 10^6$
 - This is really the logic switch requirement
 - I.e., power management doesn't change this…

Why Power Gating Doesn't Help

- Can indeed use another switch to turn off power
 - With higher I_{on}/I_{off} power switch, reduces E_{leak}
- But very hard to improve effective α
 - When to turn the power on?
- "Power managing" each gate
 = reproducing the logic...

What Power Gating Is Good For

- Eliminate E_{leak} when system is off
 - I.e., when "obviously" not doing any work
 - So that knowing gating signal is nearly free
- Key point:
 - Power gating only reduces
 "system variability" penalty
 - Device variability?

Implications of Device Variability

- Device variability hurts in two ways
 - Reduces effective I_{on} (delay set by worst-case)
 - Increase effective I_{off} (leaky devices dominate)
- Forces increase in nominal I_{on}/I_{off}...

Steep Switches Need Low Variation

- With steep device, leakage increases dramatically with $\sigma(\Delta V_{th})$
- For same variability:
 - Can even make
 "steep" switch
 worse than CMOS

 Must consider and quantify device variability in advance

Another Issue: Wire Capacitance

- Wires critical to both delay and energy:
 - Minimum device C: ~0.1 fF
 - 1μm wire C: ~0.2 fF
- Wires often set required device V_{dd}/I_{on} (R_{on})

Where New Devices Look Good

 Achieving sharp S⁻¹ and low R_{on} looks really tough

 But, even if new switch only improves energy at higher delay (higher R_{on})...

Parallelism

- Parallelism allows slower devices
 - Already applying parallelism to CMOS today

Parallelism (cont'd)

- Benefits of parallelism
 will eventually run out
 - CMOS has minimum energy/op
 - Set by min. V_{dd} to achieve optimal I_{on}/I_{off}

• Likely the main opportunity for new devices... – If achieve I_{on}/I_{off} of ~10⁴ – 10⁶ at (>10X) lower $C_{tot}V_{dd}^2$

Summary

- Simple circuit/system models set device requirements
 - I_{on}/I_{off} set by logic depth, activity factor
 - Must consider variability and wires
- Parallelism limited by device E_{min}
 Opportunity for new, low voltage devices
- Final plug: device/circuit co-design critical
 - Especially if alternate logic device is very different from CMOS

Acknowledgements

- NSF Center for E3S
- Berkeley Wireless Research Center
- DARPA
- FCRP