Circuit- and System-Driven Requirements for Digital Logic Devices

Elad Alon
with Hei Kam, Yue Lu, Tsu-Jae King Liu

University of California, Berkeley

A Reminder

Electronics, Volume 38, Number 8, April 19, 1965 (EAR

- CMOS has hit the power wall
- Non-scaling of kT/q and hence V_{dd}; V_{th}
- But, can't forget that reducing cost is still the underlying imperative

My Assumptions (Implied by Cost)

- Stick to binary digital logic
- Replacing full design/software stack generally too expensive
- Devices need to have gain (noise margins)
- New device has yield and reliability comparable to CMOS
- Today: chip with ~ 5 billion devices works for ~ 5 years
- New device has lower circuit/system-level energy over some range of performance and area...
- Can translate all of these back to \$

What Digital Chips Look Like

- Chip energy/perf. tracks datapath/control
- Clock frequency set by delay through CL

Logic Energy and Delay

Activity factor: α

Logic Energy and Delay

- $\mathrm{t}_{\text {delay }}=\mathrm{L}_{\mathrm{d}} f \mathrm{CV}_{\mathrm{dd}} /\left(2 \mathrm{I}_{\mathrm{on}}\right)$
- $\mathrm{E}_{\mathrm{dyn}}+\mathrm{E}_{\text {leak }}=\mathrm{aL}_{\mathrm{d}} f \mathrm{CV}_{\mathrm{dd}}{ }^{2}+\mathrm{L}_{\mathrm{d}} f \mathrm{I}_{\text {off }} \mathrm{V}_{\mathrm{dd}} \mathrm{t}_{\text {delay }}$
- $\mathrm{E}_{\mathrm{dyn}}+\mathrm{E}_{\text {leak }}=\alpha \mathrm{L}_{\mathrm{d}} f \mathrm{CV}_{\mathrm{dd}}{ }^{2}\left(1+\left(\mathrm{L}_{\mathrm{d}} f / 2 \alpha\right) /\left(\mathrm{I}_{\text {on }} / \mathrm{I}_{\text {off }}\right)\right)$

Implications on Required $\mathrm{I}_{\text {on }} / \mathrm{I}_{\text {off }}$

Performance

- Pick $\mathbf{V}_{\mathrm{dd}}, \mathrm{V}_{\text {th }}$ to minimize energy for given performance (1/delay)
- Assuming work function $\left(\mathrm{V}_{\text {th }}\right)$ can be freely tuned
- Result: optimal $I_{o n} / l_{\text {off }} \propto L_{d} \cdot f / \alpha$

Optimal $\mathrm{I}_{\text {on }} / I_{\text {off }}$ Insensitive to Device

$$
\frac{I_{o n}}{I_{\text {off }}}=\beta \frac{L_{d} f}{4 \alpha}, \quad \beta=-\frac{S_{e f f}}{S_{\text {off }}} \operatorname{lambertW}\left(-\frac{4 \alpha}{L_{d} f} \frac{S_{\text {off }}}{S_{\text {eff }}} e^{\left(\frac{S_{\text {off }}+S o n}{S e f f}\right)}\right)
$$

H. Kam, T.-J. King Liu, and E. Alon, "Design Requirements for Steeply Switching Logic Devices," to appear in IEEE Trans. on Electron Devices

Example Numbers

- Logic depth: L_{d} ~ 20 to 40
- Can't be too small b/c of flip-flop and clocking overhead
- Activity factor: $\alpha \sim 1 \%$ to .01\%
- Most outputs unlikely to change in complex logic
- Fanout: $f \sim 2$ to 6
- So optimal $I_{\text {on }} / I_{\text {off }} \sim 10^{4}-10^{6}$
- This is really the logic switch requirement
- l.e., power management doesn't change this...

Why Power Gating Doesn't Help

- Can indeed use another switch to turn off power
- With higher $\mathrm{I}_{\text {on }} / \mathrm{l}_{\text {off }}$ power switch, reduces $\mathrm{E}_{\text {leak }}$
- But very hard to improve effective a
- When to turn the power on?
- "Power managing" each gate = reproducing the logic...

What Power Gating Is Good For

- Eliminate $\mathrm{E}_{\text {leak }}$ when system is off
- I.e., when "obviously" not doing any work
- So that knowing gating signal is nearly free
- Key point:

Performance

- Power gating only reduces "system variability" penalty
- Device variability?

Implications of Device Variability

- Device variability hurts in two ways
- Reduces effective $I_{\text {on }}$ (delay set by worst-case)
- Increase effective $\mathrm{I}_{\text {off }}$ (leaky devices dominate)
- Forces increase in nominal $\mathrm{I}_{\text {on }} / \mathrm{l}_{\text {off }}$..

Steep Switches Need Low Variation

- With steep device, leakage increases dramatically with $\sigma\left(\Delta V_{\text {th }}\right)$
- For same variability:
- Can even make "steep" switch worse than CMOS

- Must consider and quantify device variability in advance

Another Issue: Wire Capacitance

- Wires critical to both delay and energy:
- Minimum device C: ~0.1 fF
- $1 \mu \mathrm{~m}$ wire C: $\quad \sim 0.2 \mathrm{fF}$
- Wires often set required device $\mathrm{V}_{\mathrm{dd}} / \mathrm{I}_{\text {on }}\left(\mathbf{R}_{\text {on }}\right)$

Where New Devices Look Good

- Achieving sharp \mathbf{S}^{-1} and low $R_{\text {on }}$ looks really tough

- But, even if new switch only improves energy at higher delay (higher $\mathbf{R}_{\text {on }}$)...

Parallelism

Perf. $\propto f_{\text {clk }}$

Perf. $\propto 2 f_{\text {clks }}$ E/op ~const

Performance

- Parallelism allows slower devices
- Already applying parallelism to CMOS today

Parallelism (cont’d)

- Benefits of parallelism will eventually run out - CMOS has minimum energy/op
- Set by min. $\mathbf{V}_{\text {dd }}$ to achieve optimal $I_{\text {on }} / I_{\text {off }}$

- Likely the main opportunity for new devices...
- If achieve $I_{\text {on }} / I_{\text {off }}$ of $\sim 10^{4}-10^{6}$ at $(>10 X)$ lower $C_{\text {tot }} V_{\text {dd }}{ }^{2}$

Summary

- Simple circuit/system models set device requirements
- $I_{\text {on }} / I_{\text {off }}$ set by logic depth, activity factor
- Must consider variability and wires
- Parallelism limited by device $E_{\text {min }}$
- Opportunity for new, low voltage devices
- Final plug: device/circuit co-design critical
- Especially if alternate logic device is very different from CMOS

Acknowledgements

- NSF Center for E3S
- Berkeley Wireless Research Center
- DARPA
- FCRP

